UNCLASSIFIED
ap_296 388

Reprodisced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED




NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
otn-r than in connection with a definitely related
government procurement operation, the U. 8.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any vay
supplied the said drawings, specifications, or other
data 18 not to be regarded by implicetion or other-
vise as in any manner licensing the holder or any
other parson or corporsation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




DASA 1336

296 389

TECHNICAL
PROGRESS REPORT

DEFENSE ATOMIC SUPPORT AGENCY

WASHINGTON 25, D.C.

63-2-7




TRANSLATIONAL EFFECTS OF AIR BLAST
FROM HIGH EXPLOSIVES

1. Gerald Bowen

Paul B, Woodworth

Mary E. Franklin
Clayton 5. White, M. D.

Fresented befcre
The Symposium on Effectiveness Analysis
Techniques for Non-Nuclear Warheads Against
Surface Targets, U. S. Naval Weapons Laboratery
Dahlgren, Virginia, October 30, 1962

This work, an aapect of investigations dealing with the biological
Eifects of Blast from Bombs, was supperted by the Defense Atomic
Support Agency of the Department of Defense
and it being submitted as a Technical Progress Report

on Contract No. DA-49-146-XZ-055,

(Reproduction in whole or in part is permitted for any
purpos® of the United States Government.)

Lovelace Foundation for Medical Education and Research
lbugusrgque, New Mexico
November 7, 1962

DASA-1336




CHAPTER { INTRODUCTION AND SUMMARY

A portion of the studies of the biological effects of blast from
nuclear explosiona has been concerned with the translationai ciiccts
of blast waves for objects as small as a 10-mg stone and as large
as a 168-1b man. Computed results from theoretical studies!,
when compared to field data for near-ideal blast waves from nu-
clear explosions3: 4,5 have demonstrated that the motion of experi-
mental objects can be satisfactorily predicted for free-field con-
ditions or for window glass in houses.

This report presents for high explosives (free-air urst) the
results of a similar theoretical study — specifically, computed
velocity, displacement, and acceleration as functions of time for
a variety of objects exposed to blast waves with 12 ma..mwn over-
pressures ranging from 1 to 20 atm. Although all computations
were made for 1 ton of high explnsives burst in iree air, the re-

% .lts may be readily scaled to lower or higher yiclds and to surface
bursts. The translated objects, or missiles, are identified in this
study by their acceleration coefficients* which range from 0. 01 to
6.0 ft2/1b, **

*Acceleration coefficient ias defined for an object as its area
presented to the wind times its drag coefficient divided by its
mass, See Ref. 2,

#2This range in acceleration coeificients is for 1 ton of high
explosives burst in free aix. Because of scaling laws (see
Sect. 2. 1), different ranges would apply to other yields and to
surface burats.
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CHAPTER 2 ANALYTICAL PROCEDURES
2.1 THE MODEIL

3

The computational model used in this work was reported in
Ref, 1 and will not be describad in “etail, In the previous study
tabular values of computed velogity, displacement, and accel-
eration as functions of time were presented as nondimensional
quantitites for missiles produced by nuclear blast waves. How-
@ver,, to make interpratation of the resulia casier, the compu-
tations in the present study for missilcs produced by high-
explosive blast waves were made in dimensional form for a yield
of { ton,*and the results are presented graphically. Dimensional
analysis derived previously! make it possible to apply the results
to explosions of lower or higher yields within the limits of weapons'
sgaling.

In deriving the computational model (see Ref. 1}, the following
assumptions were made: ‘(1) Friction between the missile {trans-
lated object) and the surface was negligible, (2) The effect of
gravity on the horizontal velocity of the missile could be neglected.
(3) Only the winds assagiated with the blast wave contributed to
misstile translation. (4} The acceleration coefficient of the mis-
gile could be assumed to be constant, (5) The blast wave does not
decay appreciably while passing the missile,

Allowance was made for the abject being cxposed to the blast
winds.for a time dependent or the relative velocity of the missile
and the blast wave, This effect was particularly important for the
missiles with the higher-acceleration coefficients which are pro-
pelled to relatively high velocities.

Numerical solutions of the model ware detsrmined by atepwise

integraticn of the model equations, ! For missile velocity, the
following was used

*Av=e+fr-\/e2+f2+2fg {1)
‘where

Av is positive if u> vy,

Av is negative if E.> {-‘.

Av = change in missile velocity during time step At,

e=2xXa-v

— i’

*For free~air bursts,

<3
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f¥c3(_g-vi)§ At,’lx_z,
ge%-u
and o e

v, = missile velocity at beginntry of At,
4 = average wind velocity during At,

x = average veloelty of propagation of blast wave during at,

approximated by x 2 0.6 u+ t;i +.36 32 :

¢, = velecity of sound in the unflistur‘bed alr
a & agceleration coefficient = s Cdlm.
s 3 area presented to wind by missile, .
Cq = drag coeffinlens of missile,
m = mass of missils, and
gq = av.rage dynamic pressure during At.
Incremental distance, Ad, was computed by the following:
Ad = ‘(vo + avi2) At x/ (4 - Vo " Avl2) {2)

Missile acceleration, a, was determined from the following
{integration being unnecessary):

3?%{.=q¢‘u-v)zluz {3)

where q, u, and v are dynamic pressure, wind relocity, and missile
velogcity at any time t. (Note that an acreleration numesic is used in
Chap. 3: A = afg wherae g is the acceleration of gravity.)

Equations (1) and {2) were integrated in a stepwise fashiva from
the arrival time of the blast wave (t = 0) to the time of zero wind
velocity {t = t;‘;). Because of rapld changes in missile and wind
velociti=s shortly after the arrival of the blast wave, it was neces.
sary to use smaller time stepe during the early times than during
later tImes. The following arbitrary scheme was used to determine
the variable time step, The first step was always 0.001 t}. The
remaining time (t§ - 0,001 t}) was divided into 39 log intevvals.

The first 85 of the log intervals were used as ever-increasing time

~de




steps. The 85th log interval was then used as a constant time step
until time t, was reached. : :

For aonvenlence, the sgaling luwe for translational studies °
derived in Chaps, 2 and 5 of Raf. 1 will be restater using the term!-
nology of the present reporte The subsgript 1" 11 used t® denote
parameters appileable to a yield of 1 ton of high explosives,® toan
arabignt spaed of sound of 1117 ftfses, and to an ambieat pressure
of 14,7 p#i. The paramaters withuut subseripts are applicable to a
yleld of W ton#, to an amblent speed of souad of a, ft/ses, and to
an ambignt pressure of pp psi, Thus, the results In Ghap, 3 can
be scaled as follows Loz fzee=air bursts (f>r surface bursts, feplace

W by 2W): ,
vy, (eohn’l),
a2 dy (14.7 W/p )
Ax A (e 11D a3 e,
taty Q7)) (14,7 Wiptl

o ] &M
@ = ay (14. 7/p %3 (e 111172 (1/W)

1/3, :

1/3

where
v = missila velocity in ft/sec,
c, = ambient speed of sound in ft/saz,
d = distance of misaile travel in ft,

W = yigld of high explosives* in tons (for surface bursts,
replace W by 2W),

Py © ambient pressure in psi,

A = accelaration of missile (A = a/32.2) in gravity units,
t = time aftar arrival of blast wave in msec, and

a = acceleration coefficient {a = 5 Cdlm) in ftzflb.

2,2 BLAST-WAVE PARAMETERS

2.2.1 Generxal

The solution of the tramnslation modal described in the last
section requires that dynamie pressure (g) and wind velacity (u) be

%F'or {ree-aiy bursts,
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defined as a function of time. Clear and explicit presentations of
these quantitles for high explosives ware not found in the literature,
Consequently, most of the blast mtmx!l used in this report was
tuken from a numerical study by Brode® and from experimental
. results reported by Goodman. 3 This’material,along with Rankine~
Hugonlot equations, allowed computation of the needed blast para=- .
metezse The overpressure-time relation, needed t determine
wind velocity as a function of time, will be treated first.

2.2.2 Overpzessuge vs. Time

The overpressure informstion was cbtained from experi~
me.tal results.? Duration and ovezrpressure {impulse sealed to
1 ionof high explosives are recorded in Table & 1 for the overpress=
sure values of interest In this stady. Overpressure asa fancetion
of time w~a not defined in Ref. 3, but in the present report it was
assumed to be of the form
P=P, (1~ T)e~2T t4)
whers
P a gverpressura in atm,
P, = maximum or shock overpresscre in atm,
+
Tat/t,
st/ ‘p
t = time aftex arrival of the blast wave in msec,
t; & duration of positive overpressure in mseg, and
n = & constant for a given value of P .

Since n in the sbove equation detemhr- the shapa of the

¢
P-t curve, it also determines the impulse, J Pp ds, for payiicslar

values of P; and tf. Thus, integrating Eq. {4} gives the following .
impulse, 1§, relation:

+ 4+, -n &

Ip = ?.tp {e®+n-1)/n {5)

The valuss of o listed in Table 2.1 were found using Eq. {5).



o Table 2.1

a
L

Pajamaters for Determining Overpressure~time Functions*
{1 Ton of High Explostves, Free~Alr Bursty

?’. a.tm* §. msec I;, attn maee n

° 1.0 16,5 6. 48 - .980
. 1.5 14,4 3.85 1,32
2.0 12.9 8,30 1,47

2.8 11.%7 3.9 1.85

3.0 10.9 9.46 1.8

4.0 9.70 10.3 2.1%

5.0 8. 8% 10.9 2,42

6.0 8.40 11.4 2. B0

8.0 .99 12,2 3.83

10-0 7- 73 12.7 : 4.40

15.0 6.27 13.6 5.19

%0, 0 3.00 i4.2 2,65

PP (1.7 ™7 where T 3 1/t
" °
- -?-
o -~‘ . ‘ ‘ p‘ .




2.2.3 Dynamic Pressure va. Time e

Dynamic pressure in atmospheres at the shogk front, Qs
was computed using the Rankine-Hugoniot relation repoxsted in Ref, 4%

2.5 B¢
S A @

8
Values of Qg gorresponding to Pg values wsed in thls stedy are
11sted in the segond doltmn of Table 2. 2. Durations, t§, andim-
pulses, I}, for dynamisg pressure in the same table werae abtatned

: by scallng the restlts of a ndmerleal study%te a yield of 1 tea

(Lea-ah' burst). A ssaling fastor was appiied to the numaerigal s

° sults In order to makae the overpressgre duratlons consalatens wigh
those found exparimantally, s

A proccdure similar to that deseribed in Seet, 2.2. 2 was
. 1sed to daternsine dyaamic pressure va, time. Values recorded
in Table 2.2 for r wars obtulged {rem

4+, -
I:-Q’tu(e r+r-1)jrz {n
Q'
where . >
°o Qs = maxtmum or shock dynamle pregsuge tn atm,
t.: = duration of pasltive dyram!ic pressuxe in meee, ang o0

r * a constant foz a partlcular value of B_or Q.

Dynamle peassure 8s a functlon of tima could then be found
using

Qe ft-me7 -
vhete '.g‘injt';a '

2.2%e4 Wind Velogity va, Tima

By definiticn, - . »
qe1/2 pu® . 8 .

where g = dynamic pressare,

B °
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Table 2,2

Parameters for Determining Dynamic Pressure
as a Function of TIme*
{1 Ton of High Explosives, Free+Aly Burst}

+

Ps' atm Qs' atm*# t“, msee I:. aty mse® L_
1.0 L3125 2344 1,56 .33
1u8 26618 20e% 2,14 5,10
2.0 .11 18,4 2472 5.3
2.3 10848 .1 s.28 1.49
LN ) 2.280 16.1 3.2 8.%9
4.0 3,638 e * 4,80 9.0
5.0 8.208 3.1 5.7 10.7
5.0 0923 11.9 ° 8,65 1143
8.0 104 68% 9%.85 g.62 11.0

10,4 44.706 &1 18,81 lo.9
15,0 45,568 5.06 18.43 g.59
20.9 35, §86° 3.€0 22,19 30426
e, = where T« t/ch
2.5 B2

*2Computad from Q. - 'T"E\';‘

+

3




p = air denslty, and ¢

u® wind velogltys o

wénd veloq?y cowld thus hg detainined after the dynamic pressure
and, the afr denalty ware evaleated. ‘The 5lr density aeércss the
shock, §,» was fcund using One of the Ranigdne-Hugogiot eqeations,

prd (TE6PYMNI¢PY (9] . ¥
whare e s the ambient alr density,

Ghanges Tn alr depstty afler the passage 8f the shocig vere tinstied

to boe adlabatig. Thus, .
P+1,1714 . ’
pfﬂ,(m’ ’:- ti
where p = 2ir density whai; the overfressare L P aun, i« o
. .
@ =
. o . ° . ¢
) ° [ ]
[ ]
[ ]
®
o L] o
.. ".
° . v, .
< | ] -
Q (-]
o 290 ) ™
o
L]
-] v °
-] -}
. o .

o s 0w -,-—'~-:<-—- e
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CHAPTER 3 RESULTS
3.1 GENERAL

Computed results were obtained using the translation model
described in Sect. 2.1 and a digital computer with an incre-
mental piotter to graph the output data. The system for deter-
mining timé steps {see Sect. 2.1) resulted in 106 to 112 steps
for each numerical integration from the arrival of the blast wave
{t = 0) to the time of zero wind (t = t).

* As previously noted, all solutions were made for | ton of
high explosives for free-air bursts. The {2 different blast waves
used are identified in termys of overpressure;: Pg = p./p o the
ratig of shock overpressure to local ambient pressure (not
necessarily the sea-level value of 14,7 psi), sometimes called
excess pressure ratio. Values of P, used were 1.0, 1.5, 2,0,
2.5, 3.0, 4.0, 5.0, 6,0, 8,0, 10.0, 15.0, and 20. 0 atm.

For each Py, numeriqal intggrations were made for the
following agceleration coeffigients, ¢y, in the drder listed: 6, 3,
2,1, 0.6, 0.3, 0.2, 0.1, 0.06, 0.03, 0,02, 0.0t ft%/1b. If the
mbxtmum veloclty computed for ny acceleration coefficient vvas
less than 10 ft/seq, the compumt?on‘ were halted for that over-

eprassure. .

Acgording to the translatfonul medel used, the behavior of
an objeqt s determlned by its a®celamati®on goefficient, all other
factors belng constant. To atd interpretatfon of the computed re-
sults? a list of acaeleratfon g8¢Miclants ObtaPhed from Ref. 1
for a variety of objecta Is reproduged In**Thble 3. {. A more com-
lgte sotrce of acceleration-88eiftcignt Infarmacion can be found
n Rafe 2¢

'3.2 VELOCITY VS, ‘®IME AND DIB'PAEQB VSe TIME

» o @omplited velogity @nd disthnce as functions of time are pre-
santed foy a maxtmum overpreds¥re* of 1 atm ip Figs. 3.1 and
3.2, rqspec‘fv;ly, for sevgn atdcdleraion coefficients. Machine ®
plots for these tingd suceeeding flgurcs donnected with straight
1fnes gvery other compated point for the first 86 time steps. All
of the remaining time steps ware plott®d. Each of the curves end
at the m¥polint of the last®Ime stap before the Aynamic pro.sure

L ] o o

an

*Deffned n Seqt. 4, 1.

[ - l!.
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JTable 3.1

*Typleal Acceleration Coefficients, * e = 8C4/m
where s is the area presented to wind by missile,
Cq s the drag coefficlent of the missile,

° and m is the mass of the missile

a, ftzllb
. 168-1b mane .
. Standing faglng wind 0,052 .
e Standing sfdewile to wind 0,022
. Crouching facing wind * 0.0%1 I
Crouchlng Sidewise to wind . 0.017 * ‘
Prone allgned with wind ® LI 0,0063
* Prone perpendicular to wind 0.022
. ) Average value for tumtfing man
in straight, rigid poeition ® 0.03 .
21-g mice, maximum area presented to wind 0. 38 . *
. 180%g rats, magimum area presantgd to wind . 0.19 )
530-g guinea pigs, maximum area presented to wind 0.15 R )
. 2100-g rabbits, maximum area presented to wind 0.079 .
o Typical s';on.esv o :
0.1g 0.67 .
. 1.9 g ° * 032
1040 g 0.15
o Win&ow-glﬁss Fragments, 1/8 in, thick#* -
¢ 0.1 g, ull orientations ' * 0.78
®1.8 g, adgewise and broadside to wind 0.48-0.57
s . 10.0 g, edgewise and broadside to wind 0. 34-0.72 .
®F:om Ref. 1. *

L
h*““SYngle-ltrength window glass. See Ref. 2 for data on plate
gWiss.
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and winds become negativa. For high acceleration coefficients,
tha curves terminate at later tir .es than do those for low ones:
the missiles with high coefficients — and, thus, with high velce-
ities —~ travel along with the blast wave for longer times ihan do
those with tlie low ones.

The appropriate equatione for scaling the compu‘ed results
to other yields and ambiant pressures and speeds of sound are
presented on each chart. To illustrate scaling from 1 ton to
1000 tone {1 kt) and to compare the results for 1 kt with those
for nuclear blast waves, ! consider the maximum velocity and
distance of travel at maximum velocity predisted for a 1-g
stone when Py = 1.0 atm, pg = 14.7 psi, cg = 1117 ft/sec. A
stone of 1 g has an acceleration coefficient of 0.32 ft2/1L.

(See Table 3.1.) For azield of 1 ton* the maximum predicted
velocity for gy = 0,32 it¢/1b obtained from Fig. 3.1 ia about

30 ‘t/mec occurring 19 msec after the arvival of the blast wave.
By referring to Fig. 3.2, the distance of traszl of 19 msec is
found to be about 0, 48 ft,

To apply the computed data to a yield of 1000 tons surface
burst, it is first necessary to determine an equivalent accrlera-
tion coefficient, a), for a yield of 0,5 ton surface burst. By using
the scaling equation for ;cceleratilo/rh coafﬁciex}t in Figs. 3.1 °*
and 3.2, aj = 0.32 [t4/1b x {(2000) = 4,03 £t*/1b. The maxi-~
mum velocity predicted for this value of a) is about 210 it/sec
occurring 12 msec after the arrival of the blast wave (1=‘ig‘E 3. 1).
The distance traveled for W = 0.5 ton and {or a) = 4.03 {t2/1b at
12 msec is 2.1 1t (Fig. 3.2}, For W = 1000 tons, the distanca
is 2.1 ft x (2000)1/3 = 26 ft accurring 12 msec x {2000)1/2 = 15}
msec after the arrival of the blast wave. For comparison, the
maximum velocity and distance of travel at maximum velocity
computed for a nuclear blast wave! for the conditions stated
above for a yield of 1 kt are 200 ft/sec (high explosives: 210
ft/sec) and 28. 7 ft (high explosives: 26 ft). A similar compari-
son was made for an acceleration coefficient of 0.0238 {tZ/lb °©
and a blast wave with a maximum overpressure of 1 aim. The
high-explosive data scaled to 1 kt predicts a maximum velocity
of 29 ft/sec and the nuclear data a velocity of 30 ft/sec.

2

The charts shown in Figs, 3, 3'to 3.24, similar to those de-
scribed, were computed for maxiraum overpressures of 1.5, 2.0, 2,5, 3.0,

L]
*The data in the charts were computed for ! ton for the free-

air blast waves or 0. 5-ton surface burst,

-16-
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4.0, 5.0, 6.0, 8.0, 10.0, 15.0, and 20 atms. The velocily
curves for ay = 6.0, in some cases, cross those for the lower
acceleration coefficients (see Fig. 3.9, for example), Com-
parison of the velocity charts with the blast-wave parameters
shows that this phenomenon oceurs only for blast waves whose
dynamic pressure decays relatively fast with time, i.e., blast
waves identified with the higher values of ‘'r'' listed in Table 2. 2,

3.3 ACCELERATION V5. TIME

When a blast wave first encounters a missile having zero
velecity, the maximum acceleration experienced by the missile
is the product of its acceleration coefficient and the maximum
dynamic pressure.®* Computed values of maximum acceleration
in g-units are presented in Table 3. 2 for the maximum over-
pressures and for the acceleration coefficients used in this study,
After the missile attains a finite velocity, howaver, missile and
w'nd velocities also control missile acceleration. ¥ Thus, scaling
procedures are not necessary to obtain maximum acceleration,
but scaling {as indicated on Figs, 3.25 to 3, 36) is necessary to
evaluate accelerations occurring after the maximum.

Plots of acceleration va. time are in Figs. 3,25 to 3,36 for
the same combinations of overpressure and acceleration coef-
ficients for which velocity and displacement data were presented
in the last section. In order to separate the curves appearing on
each chart, the plots were not always made to zero acceleration.

*This relation is expressed in Eq. (3) in Chap. 2:
a=qgafu- v)zluz-

-39




MaximumzAcceleration (A, g-units) for 12 Acceleration Coeff{icients
(a, £t/

1b) and for 12 Maximum Overpressures (Ps. atm)

Table 3.2

1'-"B az=6b a=3 a=2 az) a=.6 aga=.3 a=.,2
1.0 3,970 1,980 1,320 662 397 198 132
1.5 8,410 4,200 2,800 1,400 841 420 280
2.0 4,100 7,060 4,700 2,350 1,410 706 470
2.5 20,900 30,400 6,960 3,480 2,090 1,040 696
3.0 28,600 14,300 9,530 4,760 2,860 1,430 953
4,0 46,200 23,100 15,400 7,700 4,620 2,310 1,540
5.0 66,100 33,100 22,000 11,000 6,610 3,310 2,200
6.0 87,900 44,000 29,300 14,700 8,790 4,400 2,930
8.0 135,000 67,700 45,200 22,600 13,500 6,770 4,520
10,0 187,000 93,400 62,300 31,100 18,700 9,340 6,230
15.0 325,000 162,000 108,000 54,100 32,500 16,200 10,800
20.0 452,000 226,000 151,000 75,300 45,200 22,600 15,100
P, a=.. .g=.06 a=.03 .02 a=.0l
1.0 66.2 39. % 19,8 13.2 6. 62
1.5 140 84. 1 "‘\\ggio 28.0 14. 0
2.0 235 141 70.6 47.0 23.5
2.5 348 209 104 ~69.6 4.8
3.0 476 286 143 95.3 ~.. 47.6
4.0 770 462 23 154 77,0
5.0 1,100 661 331 220 110
6.0 1,470 879 440 293 147
8.0 2,260 1,350 677 452 276
10.0 3,110 1,870 934 623 311
15.0 5,410 3,250 1,620 1,080 541
20.0 7,530 4,520 2,260 1,510

753
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CHAPTLR 4 DISCUSSIONM

4.1 MODEL RELIABILITY

This report présents numerical predictions of the behavior
of objects set in motion by high-explosive blast waves, Un-
fortunately, these predictions cannot be compared with experi-
mental data. The tranglation model, ! however, has been
successfully used to predict the results of se_ondary-missile
experiments made at the Nevada Teat Site with nuclear-produced
blast waves which were near ideal (or classical) in character, %
In another experiment with anthropomorphic dummies?! 3» maximal
velocity could be successfully computed using an averagc acceler-

: ation coefficient for a tumtling dummy. However, to duplicate
more precizely the velocity-distance measurements, it was necessary
to use an acceleration coefficient which was a function of the orien«
tatiun of the dummy during translation,

4. 2 COMPARISON WITH NUCLEAR TRANSLATIONAL EFFECTS

: In comparison with results computed for nuclear blast waves,
those for high-explosive waves indicate that the overpressure must

be considerably higher for an object to attain the same maximum
velocity, This velocity occurs, however, after a much shorter dis-
tance of translation. Because of the short distances involved, it
seems reasonable, in many cases, to assume that a translated man
would not change orientation during the accelevative phase of dis-
placement induced by high explosives; thus, a nonvarying acceleration
cnefficient corresponding to that of his original posture could be used.
For example, the charts in Fig. 3.13 and 3. 14 for P4 = 5 atm and

W = 0.5 ton (surface burst) show that a standing person with an acceler-
ation coefficient of 0.06 ft“/1h would attain a velocity of 23 ft/sec in
only Q.1 ft of travel.

A comparison was made in Sect, 3.2 between the velocities
predicted using nuclear and high-explosive blast data evaluated for
the conditions: P, = 1 atm, W = 1 kt (surface burst), Po = 14,7 psi, -
co = 1117 ft/sec.

*In these experimunts, reported in Ref, 2, the velocities
were measured for stones and spheres in open areas and for glass ‘
fragments from windows facing the oncoming blast wave. The blast -
wave entering the houses through the windows was modified; how-
ever, if it was assumed to have a maximum overpressure equal to
the reflected value of normal incidence, the maximum fragment
velocities could be predicted,
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For acceleration coeificients 2f §. 32 and 0.0238 the maximum
velocitizs computed for the two types of burst agreed within

5 per cent. This consistency in the computed regults is some-
what surprising in view of the difierences in sources of the

input blast data. (See Ref, 1,2, and 3 in Chap. 2.) Nevertheless,
field experiments ' ith high explosivea similar to those performed
with nuclear explosions?,3 are needed to test the model as well
as the input blast data.

4.3 BIOMEDICAL INTERESTS

4.3.1 General

Those interested in the relation between environmental
medicine and weapons effects recognize that any reasonably
complete understanding of the many problems involved . equires
information in the physical, biophysical, and biomedical areas.
In this regard, a conceptual gvide for analytical procedures :a.xzd
rcsearch planning is essential; indeed such has been proposed
wherein five problem areas were defined to clucidate the kinds
of data needed to establish a quantitative fabtric that would allow
the source of an environmental variation to be "tied'' to hazards
asgsessment.

The five problem areas, plus another concerned with bio-
medical tasks, are listed in Table 4. 1. The first three — encom-
passing 'free-field" scaling, "geometric" scaling and secondary
events — represent ground that muat be "'spaded™ mostly by those
qualified in the physical sciences if understanding of the environ-
mental variations that can occur at potentially populated locations
is to be forthcoming.

Contemplation of the remaining three problem areas make it
apparent that hazards assessment requires knowledge of biologic
response and the eticlogic mechanisms involved. Such knowledge,
in turn, touches biomedical tasks such as therapy, rehabilitation
and all pescible means for minimizing casualties through what-
ever protective measures might prove effective and feasible. It

is here that personnel qualified in biophysics, biology, and medicine

can contribute.

4,3.2 The Translational Problem

Missiles

Since experience has shown that blast-induced environmental
variations which are potentially hazardous include the translation
of both animate and inanimate objects, applicable and definitive




Problem Areas Relevant to Biologic
Effects of Nuciear Weapons

Table 4.1

Source

Attenuation and

Augmentation

Physical

Interaction

Biophysical

Interaction

Biologic

Response

Biomedical
Tasks

Design

Yield

Burst conditions
Range

Weather

Modification of "free-
field'! phenomena by
geornetric conditions

of exposure

Energy transfer to:
Physical objects and

biclogical material

Energy dissipation by

or within biologic

targets

Major medical syndromes

Isolated individual effects

and combined injury

Therapeutic and prophy-

lactic measures

"Free-field"
scaling

"Genmetric''

scaling

Secondary

events

Etiologic

mechanisms

Hazard

assessment

Casualty care
Rehabilitation
Prote-iive pro-

cedures

“See Fig. 4.1 which shows the maximal values of
overpressure as a function of range from a l-ton free-air burst of

high explosives at sea level.

The chart is useful since it allows

one to determine ranges for the overpressures mentioned in
Sect, 3.1.
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Overpressure, Pg, atm

1L - :.":f --:‘ : i

10 20 30 40

: Distance, ft

Fig. 4.1. Overpressure vs. distance for free-air burst of
1 ton of high explosives. (Sea-level conditions)
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data are required for any comprehensive analysis, For example,
amoag the factors that contribute to the casualty potential of blast-
energized missiles are the velocity and angle of impact; the mass
density, shape and character of the debris; and the area of the
body receiving penstrating and/or nonpenetrating wounds,

Displacement

Similarly, the potential for injury as a consequence of gross
displacement of biological targets may be due to accelerative
and/or decelerative loading. The forme- depends at least upon
the magnitude of the forces vs, time which initiate displacement
and upon the initial and subsequent orientations of the biologic
target. The latter depends mostly upon the velocity at which
deceleration occurs, the character of the ¢ -celerating surface
and the area or z2reas of the body involved whether impacting
with a solid object or tumbling over some near-horizontal sur-
face transpires.

4. 3.3 Present Study

The previous paragraphs help to place in context the con-
tribution of the analytical data presented in earlier sections of
this report in which phyasical principles were employed to »stab-
lish a quantitative relationship between [ree-{ield blast parameters
and the aerodynamic characteristics of objects that may be dis-
placed by blast winds. Thus, one may determine or estimuate many
of the important physical factora, and the quantitative valuva associ-
ated therewith, that are pertinent to the assegsment of erviron-
mental hazards.

For cxample, it is desirable Lo know what the velocity of
debris may be as a function of yield, range, and distance of
travel for inanimate objects having various areas, inasses, and
drag coefficients. Likewise, it is of value to know the order of
magnitude and duration of the ''G" loads imposed on animate objects
by blast winds assoeated with different overpressures produced Ly
various explosive yields. Also, under similar circumstances, it is
helpful to have values for the velocity of animate objects as a function
of time and dietance of travel, The latter is often pertinent because
the work space of one exposed individual may allow only a few feet
of {ravel and thus limit the impact velocity; for another individual
the eavironment may allow attainnent of a higher and perhans maxi-
mal velocity before decelerative events occeur,

Thus the graphic data prepared for the present study not only
contribute tc the physical aspects of blast effects, but also offer
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information of value to those interested in blast and shock biology
as will he noted briefly below.

4. 3.4 Biolqgical Interests

There are at least two reasons why quantitative data relevant
to blast-induced translation of objects interest biomedical person-
nel. The first is entirely pragmatic, but requires that enough in-
formation about biologic response be available to formulate biologic
criteria equal to ¢he challenge of hazardy assessment, When such
criteria exist, il becomes analytically poss'ble to set forth, asg
functions of yield and range, ''safe’’ areas and those within which
periormance may be degraded, casualties may occur, and rarious
levels of lethality can be expected.

The second reason physical data relevant to blast-induced
environmental variations intrigue blast biologists is related to
the fact that biological-response data arc frequently lacking or are
inadcquate for hazards assessrnent. Under such circumstanres
the physical information can be used to plan conceptually and to
dircct more realistic research programs. A c¢ase in point concerns
the very high initial G-loads predicted for objecta the size and chape
of man set forth in Table 3. 2 and the G+time patterns contained in
Figs. 3.25 to 3. 36 applicable to the 168-1b man, viz., acceleration
cuefficient (@) values of . 052, , 021, and . 0063 for individuals
standing facing the wind, crouching facing the wind, and prone
aligned with the wind, respectively. The physical data strictly
refer to the displaceinent of the center of gravity of rigid objects
simulating an "average' man. They specify G-loadings that rise
"instantaneously' to very high values and decay differcntly with
time depending upon yield, range, acceleration coefficient, etc.
They say nothing about the G-time variations that actually occur
on the down-~stream side of semi-elastic living object compared
with the up-stream side or about the associated loads applied to
different internal body organs.

The physical data, however, do pose problems for perceptive
hiologists. For example, whai is the biclogy of ins tantaneously
applied G-loadings? Can high-density blast winds produce injury
only because they suddenly '""push' a man too fast, and, if so, under
what circumstances? Are the significant effects, if any, limited
to small explosive charges and to "'isolated" portions of the body
such as fingers, feet, extremitics, ete.? What is the comparative
range-yield relationships between these kinds of C-loads and
hazards due to primary (pressure) and vecondary (missgiles) blast
effects?

.
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These questions prompt one to be mord mundane and say
that while the biophysical and biological considerations are
sitaply not the concern of this presentation, it is clear that the

physical data at hand, combined with biological information now
available, make many comparative assessments possible. In .
this context the present and slmilar stludigs could well foces the

light of attention on important portions of the research frontier

and perhaps speed full illumination of significant areas in future

years, *
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Attn: Col, Joha M, Talbot, Chiei, Medicai Ssrvices Division,

Room 3D1050 Oftice of Science

The Ohio State Univeraity
410 West 10th Avenue
Columbus 10, Ohio
Attn: Dr. William F, Ashe, Chairmasn, Copartaens of
Presventive Madiciie
Dean Richard L, Meiling

The RAND Corporation

1700 Main Street

Sants Honica, Calif,

Attn: Dr, H, H. Mitchell, Physice Division
Dr, Yarold L., Brods

Republic Aviation Corporation
Applied Research & Development
Farningdale, Long Ialand, N,Y.
Attn: Dr, Alden R. Crawford, Vice-President
Life Beclencex Division

Dr, Willism H., Helvey, Chief, Life Bciences Division

Dr, William J. O'Donnell, Life Sciences Division

Sandia Cormoration

P, 0. Box 5800

Albuquerque, New Mexico

Attn: Dr, C. F. Quate, Director of Research
Dr, 8., P, Bliss, Uedical Director
Dr, T, B, Cook, Manager, Department 5110
Dr, M, L, Marciit, Manager, Department 5130
Mr, L, J, Vortman, 5112

System Development Corporation
Santa Monics, California
Attn: Dr, C, J. Roach
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United Aricraft Company 1
Denver, Colorado
Attn: Dr, Ceorga J, Kidersa, Medical Director

Laboratory of Nuclear Medicine & Radiation Biolugy 2
School of Medicine
University of Californis, Los Angeles
900 Vetaran Avenus
To8 Angeles 24, California
Attn: Dr. G. M. McDonnel, Associate Profossor
Dr, Benedict Cassen

University of Illinois 1
Chicago Protassional Colleges

840 Wood Street

Chicago 12, Iliinois

Attn: Dr, John P, Merbarger, Director, Aerrmedical Laboratory

Univereity of Kentucky 1l
School of Medicine
Lexington, Kentucky
Attn: Dr, Loren D, Carlson, Professor of Physiolegy
& Biophysics

Univeraity of Kow Mexico 1
Albuquerque, New Mexico
Attn: Library

U. 8, Naval Ordnance Laboratory 2
White Qak, Maryland
Attn: Capt. Richard H. Les, MSC

Mr, James F, Moulton

U, 8, Naval School of Aviation Madicine 1
U, 8, Naval Aviation Medical Cantsy

Ponsacola, Florida

Attn: Capt, Ashton Graybiel, Director of Research

Dr. Shields Warren 1
Cancer Hasearch Institute

New England Deaconess Hospital

194 Pilgrinm Road

Boston 15, Mass.

¥right Air Dovelopment Center 2
Aeromedical Laboratory
Wright-Patterson Alr Force Base, Ohio
Attn: Commanding Officer
Dr, Henning E, vonGierks, Chief, Bioacoustics laboratory
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Dr. Bugene Zwoyer 1
Director, Shock Tube lLaboratory
P. 0. Box 188 .

University Station
Albuguergue, New Mexico

Armed Services Technical Information Agency 20 s
Arlington Hall Station
Arlington 12, virginia

Comnanding Officer 1

U. S. Naval Weapons Laboratory
Dahlgren, Virginia
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